Data Assimilation using Non-invasive Monte Carlo Sensitivity Analysis of Reactor Kinetics Parameters

15th International Conference on Nuclear Data for Science and Technology

LA-UR-22-27233

*kleedtke@lanl.gov
Introduction

- Reactor kinetics parameters are measured for integral experiments at the National Criticality Experiments Research Center (NCERC)
- These measured parameters can be used for criticality safety and validation of nuclear data
- Focus of this talk: (1) the prompt neutron decay constant (α) and (2) the effective delayed neutron fraction (β_{eff})
- Sensitivity/uncertainty analysis can be used to understand sources of uncertainty in reactor kinetics parameters [1]
- By understanding sources of uncertainty in nuclear data, targeted experiments can be performed to constrain nuclear data of interest
- EUCLID: Experiments Underpinned by Computational Learning for Improvements in nuclear Data
Theory

• Prompt Neutron Decay Constant:

$$\alpha = \frac{k_p - 1}{l}$$

• Effective Delayed Neutron Fraction:

$$\beta_{\text{eff}} = 1 - \frac{k_p}{k}$$

• Relative Sensitivity Coefficient:

$$S_{k,\sigma} = \frac{\sigma}{k} \frac{\partial k}{\partial \sigma}$$

• Relative Uncertainty:

$$\frac{\Delta k}{k} = \sqrt{S_{k,\sigma} C_{\sigma,\sigma} S_{k,\sigma}^T}$$

where $C_{\sigma,\sigma}$ is a covariance matrix of nuclear data σ (e.g., $\sigma = ^{239}\text{Pu}(n,f)$)
Methods – Manual Perturbation

• A Compact ENDF (ACE) File Perturbation
• (+)/(-) Perturbations of ACE files will be used with Central Difference
• Sensitivity Coefficient calculation using central Difference Formula:

\[S_{k,\sigma} = \frac{k_+ - k_-}{2k_0p} \]

(+) Perturbation \(k_+ \) (-) Perturbation \(k_- \) Unperturbed \(k_0 \) Perturbation Size \(p \)

• Used KOPTS card of MCNP6.2 [3,4] to get reactor kinetics parameters
• Manually perturbed ACE Files using ACEtk
• ACEtk is a toolkit for reading and interacting with ACE nuclear data files
 https://github.com/njoy/ACEtk
Methods – Data Assimilation

• This work: target parameter = k_{eff}, experimental result = α or β_{eff}
• Nuclear data-induced uncertainty of neutron multiplication factor (k_{eff}):

$$\sqrt{S_{k,\sigma}C_{\sigma,\sigma}S_{k,\sigma}^T}$$

• After including experimental result, uncertainty an be reduced [5]:

$$\sqrt{S_{k,\sigma}C_{\sigma,\sigma}S_{k,\sigma}^T - R_{k_{\text{eff}}}(S_{\alpha,\sigma}C_{\sigma,\sigma}S_{k,\sigma}^T)}$$

where

$$R_{k_{\text{eff}}} = \frac{S_{k,\sigma}C_{\sigma,\sigma}S_{\alpha,\sigma}^T + X_{\text{mod},(k_{\text{eff}},\alpha)}}{S_{\alpha,\sigma}C_{\sigma,\sigma}S_{\alpha,\sigma}^T + X_{\text{exp},\alpha} + X_{\text{mod},\alpha}}$$

where $X_{\text{exp/mod}}$ is the covariance matrix of relative experimental/modeling errors with respect to parameter listed

• Results for both a priori and posterior uncertainties will be reported
Benchmarks & Simulation Inputs

PMF-1, Jezebel

PMF-8, Thor Core

PMF-6, Flattop, Pu Core

EUCLID, 8x1 Unit Model

EUCLID, 3x2 Unit Model
Results – ICSBEP Benchmarks

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Nuclide</th>
<th>Reaction</th>
<th>Uncertainty (pcm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Target: k_{eff}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exp. Meas.: None</td>
</tr>
<tr>
<td>PMF-1, Jezebel</td>
<td>Pu-239</td>
<td>(n,n)</td>
<td>480</td>
</tr>
<tr>
<td>PMF-1, Jezebel</td>
<td>Pu-239</td>
<td>(n,f)</td>
<td>943</td>
</tr>
<tr>
<td>PMF-1, Jezebel</td>
<td>Pu-239</td>
<td>(n,γ)</td>
<td>75</td>
</tr>
<tr>
<td>PMF-1, Jezebel</td>
<td>Pu-239</td>
<td>Total $\bar{\nu}$</td>
<td>327</td>
</tr>
<tr>
<td>PMF-6, Flattop Pu Core</td>
<td>Pu-239</td>
<td>(n,n)</td>
<td>185</td>
</tr>
<tr>
<td>PMF-6, Flattop Pu Core</td>
<td>Pu-239</td>
<td>(n,f)</td>
<td>817</td>
</tr>
<tr>
<td>PMF-6, Flattop Pu Core</td>
<td>Pu-239</td>
<td>(n,γ)</td>
<td>107</td>
</tr>
<tr>
<td>PMF-6, Flattop Pu Core</td>
<td>Pu-239</td>
<td>Total $\bar{\nu}$</td>
<td>279</td>
</tr>
<tr>
<td>PMF-8, Thor Core</td>
<td>Pu-239</td>
<td>(n,n)</td>
<td>285</td>
</tr>
<tr>
<td>PMF-8, Thor Core</td>
<td>Pu-239</td>
<td>(n,f)</td>
<td>900</td>
</tr>
<tr>
<td>PMF-8, Thor Core</td>
<td>Pu-239</td>
<td>(n,γ)</td>
<td>104</td>
</tr>
<tr>
<td>PMF-8, Thor Core</td>
<td>Pu-239</td>
<td>Total $\bar{\nu}$</td>
<td>309</td>
</tr>
</tbody>
</table>
Results – Planned EUCLID Experiments

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Nuclide</th>
<th>Reaction</th>
<th>Uncertainty (pcm)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Target: k_{eff}</td>
<td>Target: k_{eff}</td>
<td>Target: k_{eff}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exp. Meas.: None</td>
<td>Exp. Meas.: α</td>
<td>Exp. Meas.: β_{eff}</td>
<td></td>
</tr>
<tr>
<td>3x2 Unit Model</td>
<td>Pu-239</td>
<td>(n,n)</td>
<td>320</td>
<td>319</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>3x2 Unit Model</td>
<td>Pu-239</td>
<td>(n,f)</td>
<td>906</td>
<td>232</td>
<td>905</td>
<td></td>
</tr>
<tr>
<td>3x2 Unit Model</td>
<td>Pu-239</td>
<td>(n,γ)</td>
<td>102</td>
<td>102</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>3x2 Unit Model</td>
<td>Pu-239</td>
<td>Total $\bar{\nu}$</td>
<td>310</td>
<td>288</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>8x1 Unit Model</td>
<td>Pu-239</td>
<td>(n,n)</td>
<td>186</td>
<td>160</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>8x1 Unit Model</td>
<td>Pu-239</td>
<td>(n,f)</td>
<td>892</td>
<td>228</td>
<td>892</td>
<td></td>
</tr>
<tr>
<td>8x1 Unit Model</td>
<td>Pu-239</td>
<td>(n,γ)</td>
<td>106</td>
<td>102</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>8x1 Unit Model</td>
<td>Pu-239</td>
<td>Total $\bar{\nu}$</td>
<td>310</td>
<td>295</td>
<td>244</td>
<td></td>
</tr>
</tbody>
</table>
Results – Planned EUCLID Experiments

239Pu(n,f)

Total Fission $\bar{\nu}$

Energy (MeV)

Sensitivity per Unit Lethargy

-3.0
-2.0
-1.0
0.0
0.1
0.2
0.3
0.4

-3.0
-2.0
-1.0
0.0
0.1
0.2
0.3
0.4

10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1}

3x2 α
3x2 β
3x2 k
8x1 α
8x1 β
8x1 k

Energy (MeV)
Conclusions

• Calculated sensitivity coefficients of prompt neutron decay constant (α) and effective delayed neutron fraction (β_{eff}) to Pu-239 nuclear data using a newly available tool (ACEtk)

• Uncertainty calculations showed trends:
 (1) The prompt neutron decay constant can be used to reduce nuclear data-induced uncertainty in Pu-239(n,f)
 (2) The effective delayed neutron fraction can be used to effectively reduce nuclear data-induced uncertainty in Pu-239 total fission $\bar{\nu}$

• Contribution to EUCLID Mission: sensitivity/uncertainty analysis can be used to determine optimal responses to constrain targeted nuclear data

• Upcoming work includes investigating other nuclide-reaction pairs and response sensitivities, such as Δp, neutron leakage spectra, and reaction rate measurements to constrain nuclear data of interest
Acknowledgments

Research reported in this publication was supported by the U.S. Department of Energy LDRD program at Los Alamos National Laboratory. NCERC is supported by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.
References

Extra Slides – Manual Perturbation Comparison to Adjoint Weighting – PU-MET-FAST-001 (Jezebel)