$^{233}\text{U}(n,\gamma)$ measurements at LANSCE

ND2022

Esther Leal Cidoncha, Aaron Couture and Gencho Rusev

26 July 2022
Motivation

- Th-U alternative to U-Pu fuel cycle due to its reduced amount of transuranium elements.
- ^{232}Th is more abundant in nature than uranium.
- In the Th fuel cycle the ^{232}Th transmutes into the fissile isotope ^{233}U.

$$n + ^{232}_{90}\text{Th} \rightarrow ^{233}_{90}\text{Th} \rightarrow ^{233}_{91}\text{Pa} \rightarrow ^{233}_{92}\text{U}$$

- $^{233}\text{U}(n,\text{f})$ produces a large rate of emitted neutrons, enough to maintain the chain reaction.
- For this reason, the Th fuel cycle may be the basis of thermal breeder reactors, being also suitable to use in fast reactors.
- Chemical advantages from thorium vs uranium: higher melting point and thermal conductivity.

Illustration of the thorium fuel cycle.
Motivation

- Experimental $^{233}\text{U}(n,\gamma)$ cross section data in the literature are scarce and were measured decades ago.
- New report [1] suggests that a simultaneous measurement with capture would be useful.
- For ^{233}U fission is around one order of magnitude more likely than capture.
 - Good discrimination between gammas coming from capture and fission is required.
 - New measurement proposed at LANL combining NEUANCE and DANCE.

![Graph showing $^{233}\text{U}(n,\gamma)$ and $^{233}\text{U}(n,f)$ cross sections from ENDF/B-VIII.]

LANSCE facility

- Neutrons produced by proton spallation on a W target.
- FP 14 = 20 m.
Time-of-flight measurements

Neutron Energy:

\[E_n = m_n c^2 \frac{1}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} - 1 \]

with:

\[v = \frac{L}{T} \]

Flux\(_n\) = \(3 \times 10^5\) n/s/cm\(^2\)/dec
Detectors

DANCE (Detector for Advanced Neutron Capture Experiments)

- $4\pi\text{BaF}_2 \gamma$-ray calorimeter composed by 160 crystals with an inner cavity of 17 cm radius [2].
- Used to measure neutron capture cross section data on small quantities of radioactive isotopes.
- We use clusters that are a group of neighbor crystals.
- We can measure E_n, E_{sum}, E_{cl}, and M_{cl}, providing more information than with C6D6 detectors.

Detectors

NEUANCE (NEUtron detector array at dANCE)

- Neutron detector array that consists in 21 stilbene crystals arranged in a cylindrical geometry around the beam pipe [3].
- NEUANCE detects neutrons with energies above 200 keV (fission neutrons have these energies), therefore **low energy scattered neutrons** that are below this threshold are discriminated.
- Used to detect neutrons coming from fission and determine by coincidence with DANCE, the gammas coming from fission.
- Those events are suppressed with a fission tag, and then the fission gamma shape is characterized with fission events to subtract the remaining fission background.
- Possibility to use a thick target.
- NEUANCE can also detect gammas.

PSD NEUANCE

- Neutrons & gammas separation using the plot (long-short)/long vs long.

- Clear discrimination between fission neutrons and γ-rays.
Fission tagging process

- Search for coincidences between the two detectors.
- The DANCE gammas in coincidence with the NEUANCE neutrons are tagged as fission gammas.
- The purpose of tagging is to define the shape of the fission γ-ray spectrum that can be subtracted from the untagged spectrum.

![Normalization window](image)

No fission events
Background studies

- The background varies with the neutron energy, therefore it is subtracted per En bin.

Mcl=(4,6)

Q value peak = 6.845 MeV
Capture to fission ratio

En = (0.3, 3000) eV

Normalization to the evaluation by eye for comparison

Preliminary Experimental Evaluation

1000b/d
Capture to fission ratio

$E_n = (3, 300) \text{ keV}$

Experimental

125b/d

Ratio

Preliminary

Los Alamos National Laboratory
Scientific opportunities with DANCE

- Gamma decay photon strength studies [3].
- R-Matrix analysis of RRR to obtain the Resonance Parameters.
 - Statistical studies to calculate the level density, level spacing, …
- R-Matrix analysis for spin determination by measuring the multiplicities of gamma-ray cascades following neutron capture [4].
- New spallation target would improve the resolution, increase the neutron flux, and open a broader type of measurements.
- Measurements for NNSA applications, nuclear astrophysics, …

Conclusions and next steps

- New measurement at LANSCE combining DANCE and NEUANCE at the end of 2020 and 2021.
- The 233U material was provided by Oak Ridge National Laboratory (December 2020).
- Two samples of 10 mg and 20 mg of 233U have been prepared at LANL by Evelyn M. Bond (December 2020).
- The experiment was performed in December 2020 and June/July 2021.
- Data analysis ongoing.
- We are looking forward to deliver the capture/fission ratio from (1-300) keV by the end of the FY2022.
Acknowledgements

This work was supported by the Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.

The 233U was supplied by DOE/SC Isotope Program.
Thanks to our collaborators John Ullmann (P-3), Cathleen Fry (P-3) and Todd A. Bredeweg (C-NR) and Evelyn M. Bond.
233U targets

- The 30 mg of 233U were supplied from Oak Ridge National Laboratory (ORNL).
- Material composition:

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Atom (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>233U</td>
<td>99.9843</td>
</tr>
<tr>
<td>234U</td>
<td><0.0002</td>
</tr>
<tr>
<td>235U</td>
<td>0.0017</td>
</tr>
<tr>
<td>236U</td>
<td>0.0004</td>
</tr>
<tr>
<td>238U</td>
<td>0.0134</td>
</tr>
</tbody>
</table>

- Two samples have been prepared by Evelyn M. Bond at LANL.
 - 20 mg
 - 10 mg