How can a diverse set of integral and semi-integral measurements inform identification of discrepant nuclear data?

Alexander R. Clark, Ph.D.
XCP-3: Monte Carlo Codes
15th International Conference on Nuclear Data for Science and Technology (ND2022)

LA-UR-22-26950
Attributes of diverse measurement sets are complementary in identifying discrepant nuclear data

- Difficult to identify nuclear data contributing to bias
 - k_{eff} requires $\sim 10^4$ differential nuclear data to simulate
 - Fissile core coupled with non-fissile material
 - Sensitive to specific neutron energies
- Apply machine learning to diverse set of measurements
 - LLNL pulsed sphere measurements
 - Simple geometry and composition
 - Sensitive to scattering and fission distributions
 - Subcritical benchmarks
 - Responses are integral SNM properties different from critical benchmarks
 - Sensitive to $P(\nu)$ moments

Tool for large-scale validation and identifying unconstrained physics spaces with ML (RAFIEKI)

<table>
<thead>
<tr>
<th></th>
<th>RAFIEKI(^{1,2,3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applies</td>
<td>Random forest & SHAP</td>
</tr>
<tr>
<td>Input</td>
<td>Integral/differential responses and sensitivities</td>
</tr>
<tr>
<td>Output</td>
<td>which nuclear data likely related to bias</td>
</tr>
<tr>
<td>Tool</td>
<td>Will eventually be open-source</td>
</tr>
</tbody>
</table>

RAFIEKI identified F-19 (n,inl) scatter cross section as contributing >100 PCM bias in HEU-SOL-THERM benchmarks.\(^4\)

Change in 9Be nuclear data importance to bias: Critical benchmarks + pulsed sphere measurements

- Increased rank = increased importance
- Decreased rank = decreased importance
- “Rank a” is for critical benchmarks + pulsed sphere measurements
- “Rank b” is for critical benchmarks only

Adding pulsed sphere measurements significantly increased importance of 9Be nuclear data above 2 MeV.
Response sensitivities to 9Be nuclear data

- USI-001-012 – Uranyl-Fluoride (233U) Solutions in Spherical Stainless-Steel Vessels with Reflectors of Be, CH2, and Be-CH2 Composites
- HMF-058-001 – Highly Enriched Uranium Metal Spheres with Beryllium Reflectors
- be0.8b – Beryllium pulsed sphere, mfp=0.8, flight path=878 cm, 26-deg

be0.8b leakage spectra (bottom) sensitivity to 9Be (n,2n) (top)
Change in 240Pu nuclear data importance to bias: Critical benchmarks + subcritical benchmarks

- Increased rank = increased importance
- decreased rank = decreased importance
- “Rank a” is for critical benchmarks + subcritical benchmarks
- “Rank b” is for critical benchmarks only
- Boxes highlight significant changes in importance

Adding subcritical benchmarks useful in disentangling errors in 240Pu (n,el) and (n,il) nuclear data.
Response sensitivities to 240Pu nuclear data

- PMF-002-001 – Bare Sphere of 239Pu Metal (240Pu Jezebel)
- PST-018-001 – Water-reflected 24-inch Diameter Cylinder of Plutonium (42.9% 240Pu) Nitrate Solution
- FNPHM-002-007 – Tungsten-reflected Plutonium-metal-sphere Subcritical Measurements
Conclusions and future work

• Importance of nuclear data to bias changed significantly when including diverse measurement sets
 - LLNL pulsed sphere measurements provided information for 9Be nuclear data above 2 MeV
 - Subcritical benchmarks provided information for 240Pu nuclear data between 100 keV and 10 MeV

• Pulsed sphere leakage spectra and neutron noise observables are differently sensitive to nuclear data compared to critical benchmarks
 - Leakage spectra are sensitive to nuclear data above 5 MeV
 - Count rate and Feynman Y are more sensitive to nuclear data

• Change in bias can help evaluators identify discrepant nuclear data

• EUCLID plans to perform RAFIEKI analysis with additional benchmark and measurement sets\(^1,2\)
 - **Benchmarks**
 - Critical
 - Subcritical
 - **Measurements**
 - LLNL pulsed sphere
 - Beta-effective
 - Reactivity coefficient
 - Reaction rate ratio
 - Neutron leakage spectrum
 - Rossi-alpha

2. W. Haeck et al., "Calculating the impact of nuclear data changes with Crater", Trans. of ANS (Nov. 2020)
Acknowledgements

• Research reported in this publication was supported by the U.S. Department of Energy LDRD program at Los Alamos National Laboratory.
• NCERC is supported by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.