Centrality dependent Lévy HBT analysis at CMS

Balázs Kórodi for the CMS collaboration

1Eötvös Loránd University

WPCF

East Lansing, 2022
BASICS OF FEMTOSCOPY

 - Momentum correlation of pions
 - Bose-Einstein correlation \(C(q) \equiv |q_{\text{LCMS}}|, q = p_1 - p_2 \)
 - Relation to the source: \(C(q) \approx 1 + |\vec{S}(q)|^2 \)
 - Gaussian source: \(C(q) = 1 + e^{-|qR|^2} \)
 - Lévy-type source + core-halo model: \(C(q) = 1 + \lambda e^{-|qR|^\alpha} \)
 - Final state interactions \(\rightarrow \) Coulomb correction

- Goals:
 - Measure \(C(q) \) in different centrality and \(K_T \) classes
 - Obtain the parameters via fitting
 - Study the centrality and \(K_T \) dependence of the parameters
CONCEPT: LÉVY HBT

- Gaussian assumption not precise enough

- Lévy distribution: $L(\alpha, R; r) = \frac{1}{2\pi} \int dq \ e^{iqr} e^{-\frac{1}{2}|qR|^\alpha}$

- Many possible reasons i.e. anomalous diffusion, critical phenomena …

- Detailed centrality dependent Lévy shape analysis
 - Measurement of:
 - Lévy stability index $\alpha \rightarrow$ shape
 - Lévy scale parameter $R \rightarrow$ scale
 - Correlation strength $\lambda \rightarrow$ core-halo
DATA SELECTION

• 2018 5.02 TeV PbPb data
• Event selection $\rightarrow \approx 2.65$ billion events
• Track selection $\rightarrow \approx 662$ billion tracks
• Pair selection
• No particle identification
 • $\approx 80\text{-}90\%$ pion, $\approx 10\text{-}20\%$ kaon+proton
 • K_T dependent ratios
 • Only influences λ
CALCULATING THE CORRELATION FUNCTION

- Pair distributions: quantum statistics + acceptance + kinematics → background sample needed

- Calculating the correlation function: $C(q) = \frac{A(q)}{B(q)} \cdot \int \frac{B}{A}$
 - $A(q)$ actual pair distribution: all same charged pairs of a given event
 - $B(q)$ background pair distribution: obtained by event mixing
 - Calculate $C(q)$ for different K_T and centrality classes

- Event mixing:
 - Mixed event contains particles from different events
 - No physical correlation
 - Background pairs from mixed event
 - Remove remaining long-range background → $DR(q)$
FITTING THE CORRELATION FUNCTION

- Example of the correlation function fit
- Small q: not reliable because of track-pair resolution
 - Checked using MC simulations
- Fitted function: Bowler-Sinyukov method
 \[DR(q) = N(1 + \epsilon q)[1 - \lambda + \lambda(1 + e^{-|qR|^\alpha})K_C(q; \alpha, R)] \]
 - \(K_C(q; \alpha, R) \): Coulomb correction
- 5 fit parameters:
 - N: normalisation factor
 - \(\epsilon \): necessary because of still remaining background
 - R, \(\alpha \), \(\lambda \): physical meaning

CMS-PAS-HIN-21-011

PbPb 0.58 nb\(^{-1}\) (5.02 TeV)

\(K_T = 1.30-1.35 \text{ GeV/c, 20-30\% cent., } h^+h^- \)
THE LÉVY SCALE PARAMETER: R vs m_T

- $m_T = \sqrt{m^2 + (K_T/c)^2}$
- Generalized homogeneity length of the source
- Smooth m_T dependence
- Centrality dependent
- Boxes: uncorrelated systematic uncertainties
- Error bars: statistical uncertainties

![Graph showing R vs m_T for different centralities in PbPb collisions with 0.58 nb$^{-1}$ at 5.02 TeV.](image)

CMS Preliminary

Correl. syst. = $+2.0\%$ -2.4% for h^+h^-
HYDRO SCALING OF $1/R^2$ vs m_T

- Hydrodynamic model: $1/R^2 \sim m_T$ ($\alpha = 2$)
 - Slope (A) \rightarrow QGP Hubble constant: $A = \frac{H^2}{T_f}$
 - Intercept (B) \rightarrow Size at freeze-out: $B = \frac{1}{R_f^2}$

- Uncorrelated syst. + stat. uncertainties for fitting
- Verifies hydrodynamic scaling
- Hubble constant between 0.12 fm$^{-1}$ and 0.18 fm$^{-1}$
- Centrality dependence

Balázs Kórodi, WPCF, East Lansing 2022
PARAMETERS OF THE HYDRO FIT

- A decreasing monotonically with $\langle N_{\text{part}} \rangle$
- Centrality dependent expansion speed
- B negative, close to constant
- Caused by Lévy source?
THE LÉVY SCALE PARAMETER: R vs N_{part}

- $\langle N_{\text{part}} \rangle^{1/3} \sim$ one-dimensional size
- If $R \sim \langle N_{\text{part}} \rangle^{1/3} \rightarrow$ geometrical meaning of R
- Linear scaling verified
THE LÉVY STABILITY INDEX: α

- Source deviation from Gaussian ($\alpha = 2$)
- Almost constant at each centrality
- Centrality dependent source
- Average value between 1.6 and 2.0
 - $\langle\alpha\rangle$ increasing with $\langle N_{\text{part}} \rangle$
 - Systematically larger for positive pairs
- Lévy assumption correct
THE CORRELATION STRENGTH: λ

- Value of λ determined by:
 - Core-halo model:
 \[\lambda = \left(\frac{N_{\text{core}}}{N_{\text{core}} + N_{\text{halo}}} \right)^2 \]
 - Lack of particle identification:
 \[\lambda \leq \left(\frac{N_{\text{pion}}}{N_{\text{hadron}}} \right)^2 \]
- Decreasing trend
 - Caused by increasing kaon, proton ratio?
- Minimal centrality dependence
THE CORRELATION STRENGTH: λ

- m_T and centrality dependent K/π and p/π ratios
- Rescaling with the pion ratio:
 - $\lambda^* = \frac{\lambda}{(N_{\text{pion}}/N_{\text{hadron}})^2}$
- Almost constant trend at each centrality
- Centrality dependent core-halo ratio
SUMMARY

- **Bose-Einstein correlations** CMS 5.02 TeV PbPb

- Centrality dependent **Lévy HBT analysis**
 - PAS: CMS-PAS-HIN-21-011

- **Results:**
 - $1/R^2$ linear scaling in $m_T \rightarrow$ hydrodynamic model verified
 - Hubble constant between 0.12 fm$^{-1}$ and 0.18 fm$^{-1}$ and centrality dependent
 - R linear scaling in $\langle N_{\text{part}} \rangle^{1/3} \rightarrow$ generalized homogeneity length of the source
 - α between 1.6 and 2.0 \rightarrow Lévy source
 - Centrality dependent
 - Almost constant at each centrality
 - Decreasing λ
 - Caused by the lack of PID
 - Centrality dependent

Supported by the ÚNKP-21-2 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund.
Thank you for your attention!
Backup slides
17 SYSTEMATIC UNCERTAINTIES

- Zvertex cut
- All particle selection cuts
- Pair cut
- Limits of the fits → biggest effect
- Centrality calibration
- Loose, default, tight settings in all cases
- Separated into “correlated” and “uncorrelated” parts

<table>
<thead>
<tr>
<th>Systematic source</th>
<th>Default</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zvertex cut</td>
<td>< 15 cm</td>
<td>< 12 cm</td>
<td>< 18 cm</td>
</tr>
<tr>
<td>p_T cut</td>
<td>> 0.5 GeV/c</td>
<td>> 0.55 GeV/c</td>
<td>> 0.5 GeV/c</td>
</tr>
<tr>
<td>δp_T cut</td>
<td>< 10%</td>
<td>< 5%</td>
<td>< 15%</td>
</tr>
<tr>
<td>$</td>
<td>\eta</td>
<td>$ cut</td>
<td>< 0.95</td>
</tr>
<tr>
<td>$N_{\text{pixel hit}}$ cut</td>
<td>> 1</td>
<td>> 2</td>
<td>> 0</td>
</tr>
<tr>
<td>$\chi^2/N_{\text{dof}}/N_{\text{layer}}$ cut</td>
<td>< 0.18</td>
<td>< 0.15</td>
<td>< 0.18</td>
</tr>
<tr>
<td>$</td>
<td>d_{xy}/\sigma(d_{xy})</td>
<td>$ cut</td>
<td>< 3</td>
</tr>
<tr>
<td>$</td>
<td>d_z/\sigma(d_z)</td>
<td>$ cut</td>
<td>< 3</td>
</tr>
<tr>
<td>$\Delta \eta, \Delta \phi$ pair cut</td>
<td>$\Delta \eta_{\text{cut}}=0.014$</td>
<td>$\Delta \phi_{\text{cut}}=0.022$</td>
<td>$\Delta \eta_{\text{cut}}=0.017$</td>
</tr>
<tr>
<td>q_{\min} lower fit limit</td>
<td>$q^0_{\min}(K_{T,\text{cent}})$</td>
<td>$q^0_{\min}-0.004$</td>
<td>$q^0_{\min}+0.004$</td>
</tr>
<tr>
<td>q_{\max} upper fit limit</td>
<td>$q^0_{\max}(K_{T,\text{cent}})$</td>
<td>$0.85 \cdot q^0_{\max}$</td>
<td>$1.15 \cdot q^0_{\max}$</td>
</tr>
</tbody>
</table>

Cent. edges:
- Default values
- Lower values
- Higher values
CALCULATION OF THE SYSTEMATIC UNCERTAINTY

\[
\delta P^\uparrow(i) = \sqrt{\sum_{n=\text{cuts}} \frac{1}{N_n^\uparrow} \sum_{j \in J_n^\uparrow} (P_{n}^j(i) - P^0(i))^2}
\]

\[
\delta P^\downarrow(i) = \sqrt{\sum_{n=\text{cuts}} \frac{1}{N_n^\downarrow} \sum_{j \in J_n^\downarrow} (P_{n}^j(i) - P^0(i))^2}
\]

- \(n \) : different cuts i.e. \(p_T \) cut, \(N_{\text{hit}} \) cut, pair cut, lower fit limit …
- \(j \) : loose or tight setting
UNCORRELATED AND CORRELATED SYSTEMATICS

- Calculate the average effect of a cut on a parameter
 - Average of all centrality, K_T and charge classes

- Uncorrelated systematic error:
 - Calculate using the differences from the averages
 - Different for every centrality, K_T and charge classes

- Correlated systematic error:
 - Calculate using the difference between the average and the default
 - Same for every centrality, K_T and charge classes

- Use $\sqrt{\text{uncorrelated}^2 + \text{statistical}^2}$ for fitting
AVERAGE SYSTEMATIC EFFECTS

<table>
<thead>
<tr>
<th>$\delta R[%]$</th>
<th>Track and event cuts</th>
<th>Pair cut</th>
<th>Fit limits</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cent.[%]</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>0-5</td>
<td>1.0</td>
<td>0.4</td>
<td>0.0</td>
<td>2.9</td>
</tr>
<tr>
<td>5-10</td>
<td>0.7</td>
<td>0.5</td>
<td>0.0</td>
<td>2.1</td>
</tr>
<tr>
<td>10-20</td>
<td>0.6</td>
<td>0.4</td>
<td>0.0</td>
<td>1.4</td>
</tr>
<tr>
<td>20-30</td>
<td>0.6</td>
<td>0.3</td>
<td>0.2</td>
<td>1.6</td>
</tr>
<tr>
<td>30-40</td>
<td>0.5</td>
<td>0.2</td>
<td>0.6</td>
<td>1.5</td>
</tr>
<tr>
<td>40-60</td>
<td>0.5</td>
<td>0.5</td>
<td>0.7</td>
<td>1.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\delta a[%]$</th>
<th>Track and event cuts</th>
<th>Pair cut</th>
<th>Fit limits</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cent.[%]</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>0-5</td>
<td>0.6</td>
<td>0.7</td>
<td>4.8</td>
<td>0.0</td>
</tr>
<tr>
<td>5-10</td>
<td>1.1</td>
<td>0.6</td>
<td>3.2</td>
<td>0.0</td>
</tr>
<tr>
<td>10-20</td>
<td>0.3</td>
<td>0.4</td>
<td>1.9</td>
<td>0.0</td>
</tr>
<tr>
<td>20-30</td>
<td>0.1</td>
<td>0.5</td>
<td>2.0</td>
<td>0.1</td>
</tr>
<tr>
<td>30-40</td>
<td>0.2</td>
<td>0.7</td>
<td>2.0</td>
<td>0.7</td>
</tr>
<tr>
<td>40-60</td>
<td>0.4</td>
<td>0.4</td>
<td>1.7</td>
<td>0.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\delta \lambda[%]$</th>
<th>Track and event cuts</th>
<th>Pair cut</th>
<th>Fit limits</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cent.[%]</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>0-5</td>
<td>4.7</td>
<td>2.0</td>
<td>0.0</td>
<td>6.8</td>
</tr>
<tr>
<td>5-10</td>
<td>3.7</td>
<td>1.7</td>
<td>0.0</td>
<td>5.5</td>
</tr>
<tr>
<td>10-20</td>
<td>2.6</td>
<td>1.3</td>
<td>0.0</td>
<td>4.3</td>
</tr>
<tr>
<td>20-30</td>
<td>2.4</td>
<td>1.0</td>
<td>1.1</td>
<td>4.4</td>
</tr>
<tr>
<td>30-40</td>
<td>2.4</td>
<td>0.9</td>
<td>1.7</td>
<td>4.0</td>
</tr>
<tr>
<td>40-60</td>
<td>2.0</td>
<td>0.9</td>
<td>1.7</td>
<td>3.3</td>
</tr>
</tbody>
</table>
THE PHYSICAL MEANING OF THE FIT PARAMETERS

• Usually plot them vs transverse mass: \(m_T = \sqrt{m^2 + (K_T/c)^2} \)

• Lévy scale parameter \(R \):
 • Generalised homogeneity length of the source
 • Hydrodynamic model: \(1/R^2 \sim m_T \) (if \(\alpha = 2 \))
 • Slope of the line (A) \(\rightarrow \) QGP’s Hubble constant: \(A = \frac{H^2}{T_f} \)
 • Intercept of the line (B) \(\rightarrow \) geometrical size at freeze-out

• Lévy stability index \(\alpha \):
 • Difference compared to Gaussian distribution (\(\alpha = 2 \))
 • Anomalous diffusion, fragmentation of jets …
 • Sign of the QCD critical point (not at LHC energies)

• Correlation strength \(\lambda \):
 • Core-halo model: \(C(q \rightarrow 0) = 1 + \lambda \)
 • Other possible causes i.e. coherent pion production, restoration of the chiral symmetry …