LLRF control system

SRF’21
25th of June 2021

Mathieu Omet
Disclaimer

- This tutorial will give only a rough overview, it is incomplete by its nature
- I have worked mostly on pulsed SRF linacs
- I will answer questions after the tutorial
Contents

- Introduction
- Cavity theory
- LLRF system overview
- Signal detection
- Signal processing and implementation
- Example features of an LLRF system
- Summary
Introduction
What does LLRF stand for? What is it about?

- **Low Level Radio Frequency**
- The goal: control the amplitude and phase of electro-magnetic fields within cavities
 - Required at a wide range of facilities, from small test facilities to large scale accelerators
- These fields can have high amplitudes and high frequencies
- Thus down-conversion to small amplitudes for detection is applied
 - (and in some cases also a down-conversion to low frequencies, while preserving amplitude and phase information, is applied)
Superconducting and Normal Conducting Cavities

• Frequency ranges from MHz to tens of GHz
Modes of Operation

• Pulsed mode
 • Short Pulse mode (SP)
 • Duty factor of e.g. 1%
 • Long Pulse mode (LP)
 • Duty factor of 10% to 50%
 • Only a certain portion of time is usable for beam acceleration

• Continuous Wave (CW)
 • Continuous RF field
 • Duty factor of 100%
 • Beam can be accelerated all the time
Most basic layout of an RF system

- Open loop operation
 - Controller creates drive signal corresponding to a set point
 - Signal is amplified
 - Signal is coupled into the cavity
 - Signal is coupled out of the cavity
 - Signal is detected by the controller
Most basic layout of an RF system

• Closed loop operation
 • Controller creates drive signal corresponding to a set point
 • Signal is amplified
 • Signal is coupled into the cavity
 • Signal is coupled out of the cavity
 • Signal is detected by the controller
 • Controller compares signal to the set point and adjusts the drive signal accordingly
Most basic layout of an RF system

- Let’s take a look at the cavity first
Cavity Theory
Cavity modeling: RCL model

• Electric circuit
 • Resistor R
 • Inductor L
 • Capacitor C

• Forms a harmonic oscillator
Cavity modeling: Quality factor in general

\[Q = \frac{2\pi \text{ stored energy in cavity}}{\text{dissipated energy per cycle}} = \frac{2\pi f_0 W}{P_{\text{diss}}} \]

- Resonance frequency
- Stored energy
- Dissipated power

Mathieu Omet, 25th of June 2021
Cavity modeling: Unloaded quality factor

- Assumes losses only due to surface resistance

\[Q_0 = \frac{2\pi}{T} \cdot \frac{1}{2} CV_0^2 \]

\[Time \text{ period of an RF cycle} \]
\[Resistance \]
\[Capacitance \]
\[Square \text{ of amplitude of oscillating voltage} \]

\[Q_0 = \omega_0 RC = \frac{R}{L\omega_0} = \frac{\omega_0 W}{P_{\text{diss}}} \]

\[W = \frac{1}{2} CV_0^2 \]
\[P_{\text{diss}} = \frac{V_0^2}{2R} \]
\[\omega_0 = \frac{1}{\sqrt{LC}} \]
\[\omega_0 = 2\pi f_0 \]
Cavity modeling:
External quality factor

• Accounts for external losses (e.g. via the power coupler)

\[Q_{ext} = 2\pi \frac{\text{stored energy in cavity}}{\text{dissipated energy in external devices per cycle}} = \frac{\omega_0 W}{P_{ext}} \]

Dissipated power in all external devices
Cavity modeling: Loaded quality factor

- Accounts for all losses

\[Q_L = 2\pi \frac{\text{stored energy in cavity}}{\text{total energy loss per cycle}} = \frac{\omega_0 W}{P_{\text{tot}}} \]

\[P_{\text{tot}} = P_{\text{diss}} + P_{\text{ext}} \]

\[\frac{1}{Q_L} = \frac{1}{Q_0} + \frac{1}{Q_{\text{ext}}} \]

In case of SC cavities \(Q_0 \) is several orders of magnitude larger than \(Q_{\text{ext}} \). Thus, \(Q_L \) is in the same order as \(Q_{\text{ext}} \).
Cavity modeling: Definition of the Loaded Quality Factor

- Add transition line
- Impedance Z_{ext} is like a parallel resistor to R (characteristic impedance of a coaxial cable: 50 Ω)
- Both can be replaced by the loaded shunt impedance R_L

\[
\frac{1}{R_L} = \frac{1}{R} + \frac{1}{Z_{\text{ext}}}
\]

\[
Q_0 = \omega_0 RC = \frac{R}{L\omega_0} = \frac{\omega_0 W}{P_{\text{diss}}}
\]

\[
\frac{R}{Q_0} = \omega_0 = \frac{1}{\omega_0 C} = \sqrt{\frac{L}{C}}
\]

R/Q_0 depends only on ω_0, C, and L, which means it depends only on the cavity geometry and not the surface resistance.
Cavity modeling: Definition of the Loaded Quality Factor

- The shunt impedance R_{sh} depends on the dissipated power
- Includes factor $\frac{1}{2}$ of the time average

\[
P_{\text{diss}} = \frac{1}{2} \cdot \frac{V_{\text{cav}}^2}{R} = \frac{V_{\text{cav}}^2}{R_{sh}}
\]

\[
R = \frac{1}{2} R_{sh} = \frac{1}{2} \frac{r}{Q} Q_0
\]

- Definition of normalized shunt impedance

\[
\frac{r}{Q} := \frac{R_{sh}}{Q_0} = \frac{2R}{Q_0}
\]
Cavity modeling: Definition of the Loaded Quality Factor

- Coupling between cavity and transmission line

\[\beta = \frac{R}{Z_{\text{ext}}} \]

\[\frac{1}{R_L} = \frac{1}{R} + \frac{1}{Z_{\text{ext}}} \]

\[R_L = \frac{R}{1 + \beta} \]

\[r \triangleq \frac{R_{\text{sh}}}{Q_0} = \frac{2R}{Q_0} \]

\[Q_L = \frac{Q_0}{1 + \beta} \]

\[\omega_{1/2} = \frac{\omega_0}{2Q_L} \]

\(Q_L \) can be manipulated by changing the coupling \(\beta \)

And with this the cavity bandwidth
Solutions for Changing the Coupling

• Change input depth via movable input coupler antenna

• Change angle of plate of waveguide reflector
Pulsed Operation with Beam Loading

- Without beam

- With beam

Mathieu Omet, 25th of June 2021

LLRF control system
Derivation of Filling and Flattop Powers

\[I_C + I_R + I_L = I_{cav} \]
\[\dot{I}_C + \dot{I}_R + \dot{I}_L = \dot{I}_{cav} \]
\[\dot{I}_C = C\ddot{V}_{cav} \]
\[\dot{I}_R = \frac{1}{R_L}\dot{V}_{cav} \]
\[\dot{I}_L = \frac{1}{L}V_{cav} \]
\[C\ddot{V}_{cav} + \frac{1}{R_L}\dot{V}_{cav} + \frac{1}{L}V_{cav} = \dot{I}_{cav} \]
Derivation of Filling and Flattop Powers

\[
\dddot{V}_{cav} + \frac{1}{R_L C} \dot{V}_{cav} + \frac{1}{L C} V_{cav} = \frac{1}{C} i_{cav}
\]

\[
\frac{1}{R_L C} = \frac{\omega_0}{Q_L}
\]

\[
\frac{1}{L C} = \omega_0^2
\]

\[
\dddot{V}_{cav} + \frac{\omega_0}{Q_L} \dot{V}_{cav} + \omega_0^2 V_{cav} = \frac{1}{C} i_{cav}
\]

\[
V_{\text{hom}} = e^{-\frac{\omega_0 t}{2 Q_L}} \left(C_1 e^{i\alpha t} + C_2 e^{-i\alpha t} \right)
\]

\[
\alpha = \omega_0 \sqrt{1 - \frac{1}{4 Q_L^2}}
\]

One particular solution can be found with

\[
i_{cav} = \hat{I} e^{i\omega t}
\]

\[
V_{cav} = \hat{V} e^{i(\omega t + \phi)}
\]

Φ is the angle between the generator current and the resonator voltage.
Derivation of Filling and Flattop Powers

\[V_{\text{par}} = \frac{R_L \hat{I} e^{i(\omega t + \phi)}}{\sqrt{1 + \tan^2 \phi}} \]

with \[\tan \phi = R \left(\frac{1}{\omega L} - \omega C \right) = Q \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right) \]

The particular solution is also called a stationary solution. If the generator frequency \(\omega \) is very close to the resonance frequency \(\omega_0 \), the following approximation can be done:

\[\dot{V}_{\text{par}}(\Delta \omega) \approx \frac{R_L \hat{I}}{\sqrt{1 + (2QL \frac{\Delta \omega}{\omega})}} \]

where \(\Delta \omega = \omega_0 - \omega \)
The frequency dependency of the amplitude is known as the Lorentz curve.

Bandwidth of the cavity is defined by the -3 dB point.
Derivation of Filling and Flattop Powers

The general solution is:

\[V_{\text{cav}} = V_{\text{hom}} + V_{\text{par}} = e^{-\frac{\omega_0 t}{2Q_L}} \left(C_1 e^{i\alpha t} + C_2 e^{-i\alpha t} \right) + \frac{R_L \hat{I} e^{i(\omega t - \phi)}}{\sqrt{1 + \tan^2 \phi}} \]

since \(Q_L >> 1 \) One can approximate:

for \(C_1 = C_2 = -\frac{R_L \hat{I}}{2} \)

\[V_{\text{fill}} = V_0 \left(1 - e^{-\frac{t}{\tau}} \right) \]

with \(V_0 = R_L \hat{I} \approx 2R_L I_g = \frac{r}{Q} Q_L I_g \) \(\tau = \frac{2Q_L}{\omega_0} \)

\(\hat{I} \approx 2I_g \)

\(\hat{I}_b \approx 2I_{b0} \)

\(I_{\text{cav}} = 2I_g - 2I_{b0} \)

\[V_{\text{flat}} = \frac{r}{Q} Q_L \left(I_g \left(1 - e^{-\frac{t}{\tau}} \right) - I_{b0} \cos(\phi_b) \left(1 - e^{-\frac{t - T_{\text{inj}}}{\tau}} \right) \right) \]
Derivation of Filling and Flattop Powers

We would like to have a constant voltage over the flattop.

\[\frac{dV_{\text{flat}}}{dt} = 0 \]

\[\frac{d}{dt} \frac{r}{Q_L} \left(I_g \left(1 - e^{-\frac{t}{\tau}} \right) - I_{b0} \left(1 - e^{-\frac{t-T_{\text{inj}}}{\tau}} \right) \right) = 0 \]

\[\frac{d}{dt} \frac{r}{Q_L} \left(I_g - I_g e^{-\frac{t}{\tau}} - I_{b0} + I_{b0} e^{-\frac{t-T_{\text{inj}}}{\tau}} \right) = 0 \]

\[\frac{r}{Q_L} \left(I_g \frac{1}{\tau} e^{-\frac{t}{\tau}} - I_{b0} \frac{1}{\tau} e^{-\frac{t-T_{\text{inj}}}{\tau}} \right) = 0 \]

\[I_g e^{-\frac{t}{\tau}} = I_{b0} e^{-\frac{t-T_{\text{inj}}}{\tau}} \]

\[I_g = I_{b0} e^{\frac{T_{\text{inj}}}{\tau}} \]
Derivation of Filling and Flattop Powers

\[V_{fill} = V_0 \left(1 - e^{-\frac{t}{\tau}}\right) \]

\[V_{flat} = \frac{r}{Q} Q_L I_{b0} \left(\frac{T_{\text{inj}} \omega_0}{e^{\frac{T_{\text{inj}} \omega_0}{2Q_L}} - 1}\right) \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filling time</td>
<td>923 (\mu)s</td>
</tr>
<tr>
<td>Beam current</td>
<td>5.8 mA</td>
</tr>
<tr>
<td>(Q_L)</td>
<td>5.44E6</td>
</tr>
</tbody>
</table>

Beam transient time
Derivation of Filling and Flattop Powers

\[P = \frac{1}{4} \frac{r}{Q} Q_L I_g^2 \]

\[P_{\text{fill}} = \frac{V_{\text{cav}}^2}{4 \frac{r}{Q} Q_L \left(1 - e^{-\frac{T_{\text{inj}} \omega_0}{2Q_L}} \right)^2} \]

\[P_{\text{flat}} = \frac{V_{\text{cav}}^2}{4 \frac{r}{Q} Q_L} \left(1 + \frac{r}{Q} \frac{Q_L I_{b0}}{V_{\text{cav}}} \right)^2 \]

\[V_{\text{cav}} = 31.5 \text{ MV/m} \cdot 1.038 \text{ m} = 32.7 \text{ MV} \]

\[Q_L = 5.44 \cdot 10^6 \]

\[T_{\text{inj}} = 923 \mu s \]

\[P_{\text{fill}} \text{ is 190 kW} \]

\[I_{b0} = 5.8 \text{ mA} \quad \phi_b = 180^\circ \]

\[P_{\text{flat}} \text{ is 190 kW} \]
Derivation of Filling and Flattop Powers

- One can stay at a single working point of the power amplifier throughout the whole RF pulse.

\[P_{\text{fill}} \text{ is } 190 \text{ kW} \quad P_{\text{flat}} \text{ is } 190 \text{ kW} \]

Non-linear behavior of a klystron (red curve)

Beam transient time

Actual output

7% power overhead

Desired output

40% power overhead

Output Power \(P_0 \) [MW]

Drive Power \(P_d \) [W]
Derivation of Filling and Flattop Powers

• Set of equations for finding optimal parameters

The optimal coupling β_{opt}

$$\beta_{opt} = 1 + \frac{r}{Q} \frac{Q_0 I_b}{V_{cav}} \cos(\phi_b)$$

Minimum power for maintaining the cavity voltage

$$P_{min} = \beta_{opt} \frac{V_{cav}^2}{r Q Q_0}$$

Optimum tuning angle

$$\tan(\phi_{opt}) = -\frac{r}{Q} \frac{Q_{L, opt}}{V_{cav}} \frac{I_b}{\cos(\phi_b)}$$

For superconducting cavities one can simplify

$$Q_{L, opt} = \frac{V_{cav}}{r \frac{I_b}{\cos(\phi_b)}}$$

$$\phi_{opt} = -\phi_b$$

$$P_{flat, min} = \frac{V_{cav}^2}{r Q L_{opt}} = V_{cav} I_b \cos(\phi_b)$$

Example set of parameter

$$V_{cav} = 31.5 \text{ MV/m} \cdot 1.038 \text{ m} = 32.7 \text{ MV}$$

$$I_b = 5.8 \text{ mA}$$

$$\cos(\phi_b) = 1$$

$$Q_{L, opt} = 5.44 \cdot 10^6$$

$$P_{flat, min} = 190 \text{ kW}$$
Detuned Cavity with Beam Loading

In reality cavities are detuned by the tuning angle Φ. The sources are Lorentz force detuning and microphonics.

Mathieu Omet, 25th of June 2021
Cavity Differential Equation Continues in Time

Differential equation for a driven LCR circuit

\[
\ddot{V}(t) + \frac{\omega_0}{Q_L} \dot{V}(t) + \omega_0^2 V(t) = \frac{\omega_0 R_L}{Q_L} I(t)
\]

Insertion in equation above and omission of the second-order time derivatives of \(V \) yields...

\[
\omega_0 \ll \omega_0
\]

The cavity is a weakly damped system

\[
\omega_{res} = \omega_0
\]

good approximation, since

\[
\omega_{res} = \omega_0 \sqrt{1 - \frac{1}{4Q_L^2}} \approx \omega_0
\]

Driving current \(I_g \) and Fourier component \(I_b \) of pulsed beam are harmonic with time dependence \(e^{i\omega t} \).

Therefore, we separate the fast RF oscillation from the real and imaginary parts of the field vector.

\[
V(t) = (V_r(t) + iV_i(t)) \cdot e^{i\omega t}
\]

\[
I(t) = (I_r(t) + iI_i(t)) \cdot e^{i\omega t}
\]
Cavity Differential Equation Continues in Time

... the first-order differential equation for the envelope:

\[
\begin{align*}
\dot{V}_r + \omega_{1/2} V_r + \Delta\omega V_i &= R_L \omega_{1/2} I_r \\
\dot{V}_i + \omega_{1/2} V_i - \Delta\omega V_r &= R_L \omega_{1/2} I_i \\
\end{align*}
\]

with

\[
\begin{align*}
\omega_{1/2} &= \frac{\omega_0}{2Q_L} \\
\Delta\omega &= \omega_0 - \omega \\
\end{align*}
\]

cavity bandwidth
cavity detuning

In state space formalism

\[
\frac{d}{dt} \begin{pmatrix} V_r \\ V_i \end{pmatrix} = \begin{pmatrix} -\omega_{1/2} & -\Delta\omega \\ \Delta\omega & -\omega_{1/2} \end{pmatrix} \cdot \begin{pmatrix} V_r \\ V_i \end{pmatrix} + \begin{pmatrix} R_L \omega_{1/2} & 0 \\ 0 & R_L \omega_{1/2} \end{pmatrix} \cdot \begin{pmatrix} I_r \\ I_i \end{pmatrix}
\]

\[
\dot{x}(t) = A \cdot x(t) + B \cdot u(t)
\]

\[
\begin{align*}
A &= \begin{pmatrix} -\omega_{1/2} & -\Delta\omega \\ \Delta\omega & -\omega_{1/2} \end{pmatrix} \\
B &= \begin{pmatrix} R_L \omega_{1/2} & 0 \\ 0 & R_L \omega_{1/2} \end{pmatrix} \\
x &= \begin{pmatrix} V_r \\ V_i \end{pmatrix} \\
u &= \begin{pmatrix} I_r \\ I_i \end{pmatrix}
\end{align*}
\]
Cavity Differential Equation
Continuous and Discrete in Time

\[
\frac{d}{dt} \begin{pmatrix}
V_r \\
V_i
\end{pmatrix} = \begin{pmatrix}
-\omega_{1/2} & -\Delta \omega \\
\Delta \omega & -\omega_{1/2}
\end{pmatrix} \cdot \begin{pmatrix}
V_r \\
V_i
\end{pmatrix} + \begin{pmatrix}
R_L \omega_{1/2} & 0 \\
0 & R_L \omega_{1/2}
\end{pmatrix} \cdot \begin{pmatrix}
I_r \\
I_i
\end{pmatrix}
\]

\[
\begin{pmatrix}
V_{i,n} \\
V_{q,n}
\end{pmatrix} = \begin{pmatrix}
1 - T \omega_{1/2} & -T \Delta \omega \\
T \Delta \omega & 1 - T \omega_{1/2}
\end{pmatrix} \begin{pmatrix}
V_{i,n-1} \\
V_{q,n-1}
\end{pmatrix} + T \omega_{1/2} R_L \begin{pmatrix}
I_{i,n-1} \\
I_{q,n-1}
\end{pmatrix}
\]
Cavity Simulator Live Demo

• Demo of single cavity in pulsed operation
 • E.g., let’s check the parameter set we have derived earlier
 \[V_{cav} = 31.5 \text{ MV/m} \cdot 1.038 \text{ m} = 32.7 \text{ MV} \]
 \[I_{b0} = 5.8 \text{ mA} \]
 \[\cos(\phi_b) = 1 \]
 \[Q_{L,\text{opt}} = 5.44 \cdot 10^6 \]
 \[P_{\text{flat,min}} = 190 \text{ kW} \]
 \[T_{\text{inj}} = 923 \mu\text{s} \]

• Let’s see for what kind of operation low and high \(Q_L \) values are interesting
LLRF Systems
Types of LLRF Systems

• Analog
 • Designed, optimized and built for a specific purpose
 • Hard to modify
 • Need extra hardware for e.g. data recording

• Digital
 • More flexibility
 • On how to design the system
 • Always possible to add, change, tweak digital algorithms
 • Modern algorithms can be realized
 • Remotely maintainable to a large degree
Example of an Analog LLRF System
Types of Digital LLRF Systems

• 19-inch modules ("Pizza box")
 • Individually developed and built hardware
 • Well optimized

• Crate-based systems
 • Of-the-shelf components
 • Well optimized cards available
 • Highly modular

• Mixed systems
 • Best of both worlds

LCLS-II prototype LLRF system at FNAL CMTS

µTCA.4-based LLRF systems at European XFEL at DESY

µTCA.0-based LLRF system at cERL at KEK

Mathieu Omet, 25th of June 2021
System Architecture Example

- Data acquisition
- Long time archive

Remote PC
Software

- Distribution of data

Control system

Remote PC
Software

- Monitoring
- Change settings
- Data acquisition

Signal acquisition
ADC

From cavity

Communication and algorithms
Software on local CPU

LAN

Signal processing
Firmware on FPGA

Drive generation
DAC

LAN

To amplifier

- Digital filter
- Feedback
- Generation of digital drive signal
- Possibly other algorithms, calculations and functionalities
Signal Sampling
Representation in Quadrature and In-phase

\[I = A \cos(\phi) \]
\[Q = A \sin(\phi) \]
\[A = \sqrt{I^2 + Q^2} \]
\[\phi = \arctan\left(\frac{Q}{I}\right) \]
Down Conversion in Frequency

• Nyquist-Shannon theorem: \(f_s > 2f_{RF} \)
 • If this is fulfilled, a perfect reconstruction of \(f_{RF} \) is quarantined.

\[
S_{RF}(t) = A_{RF} \cdot \sin(2\pi \cdot f_{RF} \cdot t + \phi_{RF})
\]
\[
S_{LO}(t) = A_{LO} \cdot \sin(2\pi \cdot f_{LO} \cdot t + \phi_{LO})
\]
\[
S_{LO \cdot RF}(t) = \sin(2\pi \cdot f_{LO} \cdot t) \cdot \sin(2\pi \cdot f_{RF} \cdot t)
= \frac{1}{2} \left(\cos(2\pi \cdot (f_{LO} - f_{RF}) \cdot t) - \cos(2\pi \cdot (f_{LO} + f_{RF}) \cdot t) \right)
\]
\[
S_{IF}(t) = \frac{1}{2} \cos(2\pi \cdot f_{IF} \cdot t)
\]

• Preserves amplitude and phase information

Example frequencies

\(f_{RF} = 1.3 \) GHz
\(f_{LO} = 1.31 \) GHz
\(f_{IF} = 10 \) MHz

RF: Radio frequency
LO: Local oscillator
IF: Intermediate frequency
Sampling methods

• IQ Sampling
• Under sampling & Over sampling
IQ Sampling

\[f_s = 4 \cdot f_{IF} \]

\[f_{IF}(0) = Q \]
\[f_{IF}(\frac{\pi}{2}) = I \]
\[f_{IF}(\pi) = -Q \]
\[f_{IF}(\frac{3\pi}{2}) = -I \]

\[
\begin{pmatrix}
I \\
Q
\end{pmatrix}_n = \begin{pmatrix}
\cos(\Delta \phi_n) & -\sin(\Delta \phi_n) \\
\sin(\Delta \phi_n) & \cos(\Delta \phi_n)
\end{pmatrix} \cdot \begin{pmatrix}
f_{IF,n+1} \\
f_{IF,n}
\end{pmatrix}
\]
Undersampling and Oversampling

\[\frac{f_s}{f_{IF}} = \frac{M}{L} = m \]

\[\Delta \phi = \frac{2\pi}{m} \]

\[m = 4 \text{ corresponds to the IQ sampling} \]
\[m < 2 \text{ corresponds to undersampling} \]
\[m > 2 \text{ to oversampling} \]

\[\begin{pmatrix} I \\ Q \end{pmatrix}_n = \frac{1}{\sin(\Delta \phi + \phi)} \begin{pmatrix} \cos(n\Delta \phi + \phi) & -\cos((n+1)\Delta \phi + \phi) \\ -\sin(n\Delta \phi + \phi) & \sin((n+1)\Delta \phi + \phi) \end{pmatrix} \cdot \begin{pmatrix} y_{IF,n+1} \\ y_{IF,n} \end{pmatrix} \]

\[I = \frac{2}{m} \sum_{n=0}^{m-1} y_n \cos \left(\frac{2\pi n}{m} \right) \]
\[Q = \frac{2}{m} \sum_{n=0}^{m-1} y_n \sin \left(\frac{2\pi n}{m} \right) \]
Undersampling and Oversampling

• Advantages of undersampling
 • Relaxed requirements for ADC due to lower sampling rate (possible cost reduction)
 • Relaxed requirements for FPGA due to lower data rate (possible cost reduction)
 • Possible to detect IF signals with higher frequency than the ADC sampling rate

• Advantages of oversampling
 • More sample points per period
 • Noise reduction due to averaging in the calculation of I and Q values
 • Choice of IF location in the first Nyquist zone is more flexible (corresponding to e.g. an available analog anti-aliasing low pass filter or to the ADC circuit optimization)
Digital Signal Processing and Implementation
Vector Sum Control

• Drive multiple cavities with one power source
Vector Sum Control of 32 Cavities at the European XFEL
Types of Feedback Controller

• Classic feedback controller
 • P: proportional controller output scales with the input error
 • I: integral controller minimizes the steady state error left from the proportional controller correction
 • D: differential controller tries to minimize rapid error changes

• Modern feedback controller
 • E.g. 2x2 MIMO (multiple input multiple output) controller (can do PID and more)
 • Cancellation of a passband mode
 • Cancellation of cross coupling between inputs
How to implement algorithms on an Field-Programmable Gate Array (FPGA)

- Write down the requirements for the firmware
- Make a flow chart and check signal widths
- Create your code
- Create a test bench for your code
- Test and debug your code within the test bench
- Test and debug your code on the target hardware (typically a test setup identical to the production system)
- Deploy the firmware on the production hardware
- If the requirements have changed, revise them and go through all previous steps

Example of Flowchart for a VHDL Algorithm for the FPGA
Ways to Create VHDL Code

- Write directly VHDL source code
 - Absolute control over functionality
 - Allows optimization for different goals (e.g. clock cycles, resources, etc.)
 - Needs good understanding
 - Can take longer to get to the result

```
-- this is a VHDL comment

-- import std_logic from the IEEE library
library IEEE;
use IEEE.std_logic_1164.all;

-- this is the entity
entity name_of_entity is
    port ('IN1' : in std_logic;
          'IN2' : in std_logic;
          'OUT1' : out std_logic);
end entity name_of_entity;

-- here comes the architecture
architecture name_of_architecture of name_of_entity is

-- Internal signals and components would be defined here
begin

    OUT1 <= IN1 and IN2;

end architecture name_of_architecture;
```

VHDL = VHSIC Hardware Description Language
VHSIC = Very High Speed Integrated Circuit

- Use e.g. MathWorks Simulink to create VHDL code
 - Allows quick prototyping
 - Good graphical representation of signal flow
 - Less control
 - Creates VHDL code, which most times cannot be easily debugged by a human
Example Features of an LLRF System
Interlock

• Every facility typically has a Personal Protection System (PPS) and most facilities have a Machine Protection System (MPS)

• Since the LLRF system is a sub-system of a facility, it must have interlock capabilities

• Typically hardwired in hardware or firmware
 • E.g., logical ‘and’ just before the DAC
Exception Prevention and Handling

• The LLRF system should prevent certain exceptions
 • Limiters
 • Maximal setpoint voltage
 • Maximal drive signal amplitude
 • Etc.

• The LLRF system should also include a certain degree of exception handling
 • Algorithms for monitoring or computing parameters and for reacting accordingly
 • Turn off RF drive in case of klystron trip
 • Quench detection
 • Etc.
Operation Close to the Quench Limit

• Quench detection is a common feature of LLRF systems
• If Q_L drops below a predefined limit, the drive is turned off
• Should create interlock for the beam
• RF is turned back on manually or by an automation algorithm
Suppression of Unwanted Passband Modes

- Implement filter (e.g. Notch filter at ADC) in order to suppress frequency of the $8\pi/9$-mode
Detuning

- Detuning lowers the amplitude / requires more power to reach the same amplitude
- Detuning induces change of phase
- The sources are Lorentz force detuning and microphonics
Detuning Compensation

- **Motor tuner**
 - Slow
 - Pre-tune cavity
 - Compensation of static detuning

- **Piezo tuner**
 - Fast
 - Compensation of dynamic detuning (E.g. Lorentz force detuning, etc.)
 - Piezo control is typically part of the LLRF system
Benchmarking the System Performance

- RF stability (VS)
 - Intra train
 - Inter train
- Long term drifts
- Must be better than requirements for (beam) operation

KEK STF: $Q_c = 2 \times 10^7$

KEK STF: $Q_{c,1} = 9 \times 10^6$, $Q_{c,2} = 3 \times 10^6$

European XFEL: overview of VS stabilities, requirements: $\Delta A \leq 0.01\%$, $\Delta \Phi \leq 0.01$ deg.
Summary and Bibliography
Summary

• What you should learn about, when are planning to get involved with LLRF
 • Your facility
 • What are the requirements? (e.g. for short time and long-time stability, etc.)
 • How to integrate the LLRF system (e.g. interlock, communication, etc.)
 • Theory
 • Cavity
 • RF
 • Signal processing
 • Controller
 • Analog hardware
 • Digital hardware
 • Firmware
 • Software
 • E.g. communication, computations, automation, data analysis, data storage, data visualization, user interface, etc.
Thank you very much for your attention! Questions?

• Bibliography
 • S. Pfeiffer, LLRF Controls and Feedback, The CERN Accelerator School, 2016
 • S. Sievers et al., Second-sound measurements on a 3 GHz SRF cavity at low acceleration fields, SRF’13, 2013
 • S. Simrock et al., Cavity Field Control, LLRF Lecture, 5th LC School, 2010
 • M. Omet, Digital Low Level RF Control Techniques and Procedures Towards the International Linear Collider, PhD Thesis, 2014
 • J. Branlard, LLRF controls and RF operations, SRF 2019 Tutorial, SRF2019, 2019
 • J. Branlard, Superconducting cavity quench detection and prevention for the European XFEL, ICAEPCS’13, 2013
 • L. Doolittle et al., High Precision RF Control for SRF Cavities in LCLS-II, SRF2021, 2017
 • J. Branlard et al., Installation and First Commissioning of the LLRF System for the European XFEL, IPAC17, 2017
 • T. Miura et al., Digital LLRF Control System for cERL, 13th Annual Meeting of Particle Accelerator Society of Japan, 2016
 • T. Hellert et al., Detuning related coupler kick variation of a superconducting nine-cell 1.3 GHz cavity, Phys. Rev. Accel. Beams 21, 042001, 2018
 • D. Kostin, Experience with the Eu-XFEL RF Couplers, AWLC’20, 2020
 • S. Fukuda, KEK HLRF Status and S1- global, LCWS’08, 2008
 • C. Pagani et al., Test results of the international S1-global cryomodule, Proceedings of the 8th Annual Meeting of Particle Accelerator Society of Japan, 2011
 • F. Qiu, Tutorial on control theory, 10th International Accelerator School for Linear Colliders, Japan, 2016
 • M. Omet, Status Update of the European XFEL, Seminar at KEK, 2019
 • M. Omet et al., High-gradient near-quench-limit operation of superconducting Tesla-type cavities in scope of the International Linear Collider, Phys. Rev. ST Accel. Beams 17, 072003, 2014