Effect of Strain Rate on the Mechanical Properties and the Dislocation Substructure of Niobium Single Crystals

High-speed sheet forming of SRF cavities with electro-hydraulic forming (EHF) showed promising results for OFE copper and niobium substrates [1,2]. The use of large-grain disks could significantly reduce the material cost for bulk niobium cavities, but cavities produced with deep-drawing showed forming defects (Fig 1).

The mechanical properties and dislocation substructures of niobium single crystals deformed in tension at strain rates greater than 10^{-1} s$^{-1}$ were unknown before this study and essential to understand the effect of high-speed sheet forming.

Motivation & Objectives

Tensile tests were performed for different crystal orientations at strain rate of 10^{-4} to 10^{3} s$^{-1}$ to measure mechanical properties. The deformed microstructure was then characterized with TEM.

Crystal Orientation Selection for Tensile Tests

1. Crystal orientation measurement for the 10 largest grains of a large-grain niobium disk.

2. Tensile sample crystal orientation selection based on Schmid law for the (110)<111> and (112)<111> slip systems.

Methodology

Tensile tests at quasi-static (1.3x10$^{-4}$ to 1.3x10$^{-2}$ s$^{-1}$), intermediate (1 to 100 s$^{-1}$), and high (~1000 s$^{-1}$) strain rates were performed with mechanical and servo-hydraulic tensile machines, and split Hopkinson pressure bars, respectively. Stress–strain curves are presented in Fig 4.

- Large increase in yield stress with increasing strain rate
- Reduction of anisotropy at high strain rate – likely explained by the activation of multiple slip systems at high strain rate

Results

Tensile Mechanical Properties

- Tensile tests at quasi-static (1.3x10$^{-4}$ to 1.3x10$^{-2}$ s$^{-1}$), intermediate (1 to 100 s$^{-1}$), and high (~1000 s$^{-1}$) strain rates were performed with mechanical and servo-hydraulic tensile machines, and split Hopkinson pressure bars, respectively. Stress–strain curves are presented in Fig 4.

- Large increase in yield stress with increasing strain rate
- Reduction of anisotropy at high strain rate – likely explained by the activation of multiple slip systems at high strain rate

Dislocation Substructure from TEM Analysis

- Tensile specimens with the same initial crystal orientation deformed at low and high strain rates were prepared for TEM analysis (Fig 5).

Low strain rate (1.28x10$^{-3}$ s$^{-1}$)

- Long dislocations
- High dislocation density
- Dislocations often in preferred orientations
- Cell walls close to the fracture surface

High strain rate (~1000 s$^{-1}$)

- Short dislocations
- High dislocation dipole density (short loops)
- Homogeneously distributed dislocations
- Effect on superconducting properties?

Conclusions & Perspectives

Conclusions

- Reduction of anisotropy at high strain rate in tension
- Reduction of ductility with increasing strain rate
- Shorter and more homogeneously distributed dislocations at high strain rate

Perspectives

- Crystal plasticity modeling to implement in EHF finite element models – effect of orientation and strain rate
- Effect of the different dislocation substructures on the superconducting properties
- Forming of half-cells at high-speed with electro-hydraulic forming

References

Acknowledgements

EASITrain – European Advanced Superconductivity Innovation and Training. This Marie Sklodowska-Curie Action (MSCA) Innovative Training Networks (ITN) has received funding from the European Union’s H2020 Framework Programme under Grant Agreement no. 768479.